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Abstract
The nonlinear Rayleigh instability of the cylindrical interface between the
vapour and liquid phases of a fluid is studied when the phases are enclosed
between two cylindrical surfaces coaxial with the interface, and when there is
mass and heat transfer across the interface. The method of multiple expansion
is used for the investigation. The evolution of amplitude is shown to be
governed by a first-order nonlinear differential equation. The stability criterion
is discussed, and the region of stability is displayed graphically.

PACS number: 47.20.Ma

1. Introduction

This paper investigates the nonlinear stability of the cylindrical interface between the vapour
and liquid phases of a fluid when there is mass and heat transfer across the interface.

The problem of stability of liquids when there is mass and heat transfer across the
interface has been investigated by several researchers (Hsieh 1972, 1978, 1979, Gill et al
1995, Elhefnawy et al 1997, Nayak and Chakraborty 1984, Elhefnawy 1994). Hsieh (1978)
established a general formulation of the interfacial flow problem with mass and heat transfer
and applied it to the Rayleigh–Taylor and Kelvin–Helmholtz instability problems in plane
geometry.

In the nuclear reactor cooling of fuel rods by liquid coolants, the geometry of the system
in many cases is cylindrical. We have, therefore, considered the interfacial stability problem
of a cylindrical flow with heat and mass transfer. Nayak and Chakraborty (1984) studied the
Kelvin–Helmholtz stability of the cylindrical interface between the vapour and liquid phases of
a fluid, when there is mass and heat transfer across the interface. On the other hand, Elhefnawy
(1994) studied the effect of a periodic radial magnetic field on the Kelvin–Helmholtz stability
of the cylindrical interface between two magnetic fluids when there is mass and heat transfer
across the interface.

The effect of mass and heat transfer across the interface should be taken into account in
stability discussions, when the situations are like film boiling of fluids. However, with linear
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Figure 1. Configuration under consideration in film boiling.

analysis, the stability criterion remains the same as in the case neglecting heat and mass transfer
across the interface. Hsieh (1972) found that when the vapour region is hotter than the liquid
region, as is usually the case, the effect of mass and heat transfer tends to inhibit the growth
of instability. Thus, it is clear that such a uniform model based on linear theory is inadequate
to explain the mechanism involved, and nonlinear theory is needed to reveal the effect of heat
and mass transfer on the stability of the system. This problem is of fundamental importance
in a number of applications such as the design of many types of contacting equipment, e.g.,
boilers, condensers, reactors and others in industrial and environmental processes.

The basic equations with the accompanying boundary conditions are given in section 2.
The first-order theory and the linear dispersion relation are obtained in section 3. In section 4,
we have derived second-order solutions. In section 5, a first-order nonlinear differential
equation which can be easily integrated is obtained, and in section 6 some numerical examples
are presented in graphical forms.

2. Formulation of the problem and basic equations

We shall use a cylindrical system of coordinates (r, θ, z) so that in the equilibrium state the
z-axis is the axis of symmetry of the system. The central solid core has a radius a. In the
equilibrium state the fluid phase ‘1’, of density ρ(1), occupies the region a < r < R, and,
the fluid phase ‘2’, of density ρ(2), occupies the region R < r < b. The temperature at
r = a, r = R and r = b is taken as T1, T0 and T2, respectively. The bounding surfaces r = a,
and r = b are taken as rigid. The interface, after a disturbance, is given by the equation

F(r, z, t) = r − R − η = 0 (2.1)

where η is the perturbation in the radius of the interface from its equilibrium value R, and for
which the outward normal vector is written as

n = ∇F

|∇F | =
{

1 +

(
∂η

∂z

)2
}−1/2 (

er − ∂η

∂z
ez

)
. (2.2)

We assume that the fluid velocity is irrotational in the region so that velocity potentials are
φ(1) and φ(2) for fluid phases 1 and 2. In each fluid phase

∇2φ(j) = 0 (j = 1, 2). (2.3)

The solutions for φ(j) (j = 1, 2) have to satisfy the boundary conditions. The relevant
boundary conditions for our configuration are (see figure 1)
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(i) On the rigid boundaries r = a and r = b:
The normal field velocities vanish on both the central solid core and the outer bounding
surface.

∂φ(1)

∂r
= 0 on r = a (2.4)

∂φ(2)

∂r
= 0 on r = b. (2.5)

(ii) On the interface r = R + η(z, t):

(1) The conservation of mass across the interface:[[
ρ

(
∂F

∂t
+ ∇φ · ∇F

)]]
= 0 or

[[
ρ

(
∂φ

∂r
− ∂η

∂t
− ∂η

∂z

∂φ

∂z

)]]
= 0

(2.6)

where [[h]] represents the difference in a quantity as we cross the interface, i.e.,
[[h]] = h(2) −h(1), where the superscripts refer to upper and lower fluids, respectively.

(2) The interfacial condition for energy is

Lρ(1)

(
∂F

∂t
+ ∇φ(1) · ∇F

)
= S(η) (2.7)

where L is the latent heat released when the fluid is transformed from phase 1 to
phase 2. Physically, the left-hand side of (2.7) represents the latent heat released
during the phase transformation, while S(η) on the right-hand side of (2.7) represents
the net heat flux, so that the energy will be conserved.

In the equilibrium state, the heat fluxes in the direction of increasing r in the
fluid phases 1 and 2 are −K1(T1 − T0)/R log(a/R) and −K2(T0 − T2)/R log(R/b),

respectively, where K1 and K2 are the heat conductivities of the two fluids. As in
Hsieh (1978), we denote

S(η) = K2(T0 − T2)

(R + η)(log b − log(R + η))
− K1(T1 − T0)

(R + η)(log(R + η) − log a)
(2.8)

and we expand it about r = R by Taylor’s expansion, such as

S(η) = S(0) + ηS′(0) + 1
2η2S′′(0) + · · · (2.9)

and we take S(0) = 0, so that
K2(T0 − T2)

R log(b/R)
= K1(T1 − T0)

R log(R/a)
= G (say) (2.10)

indicating that in the equilibrium state the heat fluxes are equal across the interface
in the two fluids.

From (2.1), (2.7) and (2.9), we have

ρ(1)

(
∂φ(1)

∂r
− ∂η

∂t
− ∂η

∂z

∂φ(1)

∂z

)
= α(η + α2η

2 + α3η
3) (2.11)

where

α = G log(b/a)

LR log(b/R) log(R/a)
α2 = 1

R

(
−3

2
+

1

log(b/R)
− 1

log(R/a)

)

α3 = 1

R2

[
11

6
− 2 log(R2/ab)

log(b/R) log(R/a)
+

log3(b/R) + log3(R/a)

{log(b/R) log(R/a)}2 log(b/a)

]
.
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(3) The conservation of momentum balance, by taking into account the mass transfer
across the interface, is

ρ(1)(∇φ(1) · ∇F)

(
∂F

∂t
+ ∇φ(1) · ∇F

)
= ρ(2)(∇φ(2) · ∇F)

(
∂F

∂t
+ ∇φ(2) · ∇F

)
+ (p2 − p1 + σ∇ · n)|∇F |2 (2.12)

where p is the pressure and σ is the surface tension coefficient, respectively.
By eliminating the pressure using Bernoulli’s equation, we can rewrite the above

condition (2.12) as


ρ


∂φ

∂t
+

1

2

(
∂φ

∂r

)2

+
1

2

(
∂φ

∂z

)2

−
{

1 +

(
∂η

∂z

)2
}−1

×
(

∂φ

∂z

∂η

∂z
− ∂φ

∂r

) (
∂η

∂t
+

∂φ

∂z

∂η

∂z
− ∂φ

∂r

)







= −σ
∂2η

∂z2

{
1 +

(
∂η

∂z

)2
}−3/2

+ σ(R + η)−1

{
1 +

(
∂η

∂z

)2
}−1/2

. (2.13)

To investigate the nonlinear effects on the stability of the system, we employ
the method of multiple scales (Lee 1997, 1999a, 1999b). Introducing ε as a small
parameter, we assume the following expansion of the variables:

η =
3∑

n=1

εnηn(z, t0, t, t2) + O(ε4) (2.14)

φ(j) =
3∑

n=1

εnφ(j)
n (r, z, t0, t1, t2) + O(ε4) (j = 1, 2) (2.15)

where tn = εnt (n = 0, 1, 2). The quantities appearing in the field equations (2.3) and
the boundary conditions (2.6), (2.11) and (2.13) can now be expressed in Maclaurin
series expansion around r = R. Then, we use (2.14) and (2.15) and equate the
coefficients of equal power series in ε to obtain the linear and the successive nonlinear
partial differential equations of various orders (see the appendix).

3. Linear theory

The linear wave solutions of (2.3) subject to boundary conditions yield

η1 = A(t1, t2) eiθ + Ā(t1, t2) e−iθ (3.1)

φ
(1)
1 = 1

k

(
α

ρ(1)
− iω

)
A(t1, t2)E

(1)(k, r) eiθ + c.c. (3.2)

φ
(2)

1 = 1

k

(
α

ρ(2)
− iω

)
A(t1, t2)E

(2)(k, r) eiθ + c.c. (3.3)

where

E(1)(k, r) = I0(kr)K1(ka) + I1(ka)K0(kr)

I1(kR)K1(ka) − I1(ka)K1(kR)
(3.4)
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E(2)(k, r) = I0(kr)K1(kb) + I1(kb)K0(kr)

I1(kR)K1(kb) − I1(kb)K1(kR)
(3.5)

θ = kz − ωt0

with Im and Km (m = 0, 1) being the modified Bessel functions of the first and second
kinds, respectively.

Substituting (3.1)–(3.3) into (2.13), we obtain the following dispersion relation:

D(ω, k) = a0ω
2 + ia1ω − a2 = 0 (3.6)

where

a0 = ρ(1)E(1)(k, R) − ρ(2)E(2)(k, R) a1 = α{E(1)(k, R) − E(2)(k, R)}
a2 = σk

R2
(R2k2 − 1).

From the properties of Bessel functions, and since α is always positive, we note that a0 > 0
and a1 > 0. The condition for stability is a2 > 0, from which we obtain k > 1

R
. Thus the

system is stable if k > kc, where

kc = 1

R
. (3.7)

4. Second-order solutions

With the use of the first-order solutions, we obtained the equations for the second-order
problem

∇2φ
(j)

2 = 0 (j = 1, 2) (4.1)

and the boundary conditions at r = R:

ρ(j)

{
∂φ

(j)

2

∂r
− ∂η2

∂t0

}
− αη2 =

[
ρ(j)

{
α

ρ(j)
− iω

}{
1

R
− 2kE(j)(k, R)

}
+ αα2

]
A2 e2iθ

+ ρ(j) ∂A

∂t1
eiθ + c.c. + 2α

(
1

R
+ α2

)
|A|2 (j = 1, 2) (4.2)

ρ(2) ∂φ
(2)
2

∂r
− ρ(1) ∂φ

(1)
2

∂r
− {ρ(2) − ρ(1)}∂η2

∂t0
=

[[
ρ

(
α

ρ
− iω

) {
1

R
− 2kE(k,R)

}]]
A2 e2iθ

+ {ρ(2) − ρ(1)}∂A

∂t1
eiθ + c.c. (4.3)

ρ(2) ∂φ
(2)

2

∂t0
− ρ(1) ∂φ

(1)

2

∂t0
+ σ

(
∂2η2

∂z2
0

+
η2

R2

)
=

{
−ω2

2
[[ρ{E2(k, R) − 3}]]

+
α2

2

[[
1 + E2(k, R)

ρ

]]
− iαω[[E2(k, R)]] +

σ

2R3
(R2k2 + 2)

}
A2 e2iθ

−
[[

ρ

k

(
α

ρ
− iω

)
E(k,R)

]]
∂A

∂t1
eiθ + c.c.

+

{[[
ρ

(
α2

ρ2
+ ω2

)
{1 − E2(k, R)}

]]
− σ

R3
(R2k2 − 2)

}
|A|2. (4.4)

The non-secularity condition for the existence of the uniformly valid solution is
∂A

∂t1
= 0. (4.5)
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Equations (4.1)–(4.4) furnish the second-order solutions:

η2 = −2

(
1

R
+ α2

)
|A|2 + A2A

2 e2iθ + Ā2Ā
2 e−2iθ (4.6)

φ
(j)

2 = B
(j)

2 A2 e2iθE(j)(2k, r) + c.c. + b(j)(t0, t1, t2) (j = 1, 2) (4.7)

where

A2 = 2k

D(2ω, 2k)

{[[
ρ

iω

k
E(2k,R)β +

ρ

2
E2(k, R)

(
α

ρ
− iω

)2

+
3ω2ρ2 + α2

2ρ

]]

+
σ

2R3
(2 + R2k2)

}
(4.8)

B
(j)

2 = 1

2k

[
β(j) +

{
α

ρ(j)
− 2ωi

}
A2

]
(4.9)

β(j) = k

{
α

ρ(j)
− iω

}{
1

kR
− 2E(j)(k, R)

}
+

αα2

ρ(j)
(4.10)

ρ(2) ∂b(2)

∂t0
− ρ(1) ∂b(1)

∂t0
=

{[[
ρ

(
α2

ρ2
+ ω2

)
{1 − E2(k, R)}

]]
− σ

R3
(k2R2 − 4 − 2Rα2)

}
|A|2

(4.11)

and we have assumed that D(2ω, 2k) �= 0. The case when D(2ω, 2k) = 0 corresponds to the
second harmonic resonance.

5. Third-order solutions

We examine now the third-order problem:

∇2
0φ

(i)

3 = 0 (i = 1, 2). (5.1)

On substituting the values of η1, φ
(i)

1 from (3.1)–(3.3) and η2, φ
(i)

2 from (4.6)–(4.7) into (A.8),
we obtain

φ
(j)

3 = C
(j)

3 E(j)(k, r)A2Ā eiθ +
E(j)(k, r)

k

∂A

∂t2
eiθ + c.c. (j = 1, 2) (5.2)

where

C
(j)

3 = −k

[
2

{
E(j)(2k,R) − 1

kR

}
B

(j)

2 − 2

(
E(j)(k, R) − 1

kR

) (
α

ρ(j)
− iω

)

×
(

1

kR
+

α2

k

)
+

1

2

(
1 +

2

R2k2
− E(j)(k, R)

Rk

) (
3α

ρ(j)
− iω

)

− α

ρ(j)
− iω +

α

ρ(j)k2

{
4α2

(
1

R
+ α2

)
− 3α3

}

−
{(

α

ρ(j)
+ iω

) (
E(j)(k, R) +

1

Rk

)
+

2αα2

ρ(j)k

}
A2

k

]
. (5.3)
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We substitute the first- and second-order solutions into the third-order equation. In order
to avoid non-uniformity of the expansion, we again impose the condition that secular terms
vanish. Then from (A.9), we find

i

k

∂D

∂ω

∂A

∂t2
+ qA2Ā = 0 (5.4)

where

q =
[[

ρ

{
−iωC3E(k,R) − A2iω

(
α

ρ
+ iω

)
+ 2kB2

(
α

ρ
{E(k,R)E(2k,R) − 1}

+ iω{E(k,R)E(2k,R) − 2}
)

+ 2 iω

(
1

R
+ α2

) (
α

ρ
− iω

)

+ kE(k,R)
iω

2

(
3α

ρ
− iω

)
+

1

2R

(
3ω2 +

6α2

ρ2
− i

α

ρ
ω

)}]]

+
σ

R4

{
2RA2(k

2R2 − 1) + 4Rα2 + 7 − 1

2
k2R2(1 − 3k2R2)

}
. (5.5)

We rewrite (5.4) as

∂A

∂t2
+ QA2Ā = 0 (5.6)

which can be easily integrated as

|A|2 = 1

|A0|−2 + 2(Re Q)t2
(5.7)

where A0 is the initial amplitude and Re Q means the real part of Q. With a finite initial value
A0, A may become infinite when the denominator in (5.7) vanishes. Otherwise, A will be
bounded. If Re Q is negative, the denominator of (5.7) can vanish and it implies rupture.
Thus, the stability condition is

Re Q > 0. (5.8)

6. Numerical results

The stability of the system depends on condition (5.8). We show the stable and unstable
regions in figures 2–5. In figures 2 and 3, the dotted lines represent the linear curve which
divides the plane into a stable region (above the curve), and an unstable region (below the
curve).

The shaded regions S are the nonlinearly stabilized regions, while the regions indicated by
U represent the destabilized regions which were originally stable regions in the linear theory.

Figures 2–5 show the stability diagrams in the h1–k plane corresponding to the cases
α = 6 × 10−2, 10−1, 6 × 10−1, 1 g cm−3 s−1, σ = 0.06 dyn cm−1, a = 1 cm and b = 2 cm.
These figures are similar in shape. Unlike the linear theory, the stability regions form narrow
bands which shift upwards, and the breadth of the bands broadens as α increases, and thus in
the nonlinear theory the region of stability is much reduced.

Therefore, from these figures we note that as α increases it has a stabilizing effect, and
the mass and heat transfer has a destabilizing effect for larger values of k.

From the above numerical discussion, it is evident that, apart from the effect of the
variation of h1 and h2, the mass and heat transfer coefficient α plays an important role in
stability criteria in contrast to linear theory. In the linear theory the mass and heat transfer
coefficient α has no effect on the linear stability conditions.
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Figure 2. Stability diagram in the h1–k plane for a system having ρ1 = 3.652 × 10−4 g cm−3,
ρ2 = 5.97 × 10−2 g cm−3, α = 6 × 10−2 g cm−3 s−1.
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Figure 3. Stability diagram in the h1–k plane for a system having ρ1 = 3.652 × 10−4 g cm−3,
ρ2 = 5.97 × 10−2 g cm−3, α = 1 × 10−1 g cm−3 s−1.

The present method has an advantage over the method originally used by Hsieh (1979)
by which he investigated the nonlinear solution near the cut-off wave number. His method is
simpler than the present method; however it has a definite disadvantage in that the information
on the behaviour of the flow can be obtained only at the cut-off wave numbers, whereas the
present method is improved and free of such a shortcoming. Such a shortcoming also exists
in the solution of the Ginzburg–Landau equation obtained by Elhefnawy et al (1997).

In figures 2–5, the thickness of the vapour varies from 0.1 cm to 0.5 cm. From figure 2,
we can see that the region of stability is narrower than the case of figure 5 where α is much
larger. This implies that when the heat flux is sufficiently intense, the system can be stabilized.
Moreover, from these figures we can see that the region of stability reduces as the thickness
of the vapour increases. So, with the same heat flux, the thinner the vapour layer, the more
easily the system can be stabilized. To sum up, we have presented an analysis of nonlinear
Rayleigh instability. It is found that, unlike in linear theory, the stability region exists in the
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Figure 4. Stability diagram in the h1–k plane for a system having ρ1 = 3.652 × 10−4 g cm−3,
ρ2 = 5.97 × 10−2 g cm−3, α = 6 × 10−1 g cm−3 s−1.
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Figure 5. Stability diagram in the h1–k plane for a system having ρ1 = 3.652 × 10−4 g cm−3,
ρ2 = 5.97 × 10−2 g cm−3, α = 1.0 g cm−3 s−1.

form of a narrow band, the width of which reduces with the increment of the thickness of the
vapour layer. The region of stability is enlarged with stronger heat flux.

7. Conclusions

The stability of liquids in a cylindrical flow when there is mass and heat transfer across
the interface which depicts film boiling is studied. Using the method of multiple time
scales, a first-order nonlinear differential equation describing the evolution of nonlinear waves
is obtained. Unlike linear theory, with nonlinear theory, it is evident that the mass and
heat transfer plays an important role in the stability of fluids, in a situation such as film
boiling.
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Appendix

The interfacial conditions are given on r = R as
Order O(ε) [[

ρ

(
∂φ1

∂r
− ∂η1

∂t0

)]]
= 0 (A.1)

ρ(1)

(
∂φ

(1)

1

∂r
− ∂η1

∂t0

)
= αη1 (A.2)

[[
ρ

∂φ1

∂t0

]]
= −σ

(
∂2η1

∂z2
+

η1

R2

)
. (A.3)

Order O(ε2)[[
ρ

(
∂φ2

∂r
+

∂2φ1

∂r2
η1 − ∂η2

∂t0
− ∂η1

∂t1
− ∂η1

∂z

∂φ1

∂z

)]]
= 0 (A.4)

ρ(1)

(
∂φ

(1)
2

∂r
+

∂2φ
(1)
1

∂r2
η1 − ∂η2

∂t0
− ∂η1

∂t1
− ∂η1

∂z

∂φ
(1)
1

∂z

)
= α

(
η2 + α2η

2
1

)
(A.5)

[[
ρ

{
∂φ2

∂t0
+

∂φ1

∂t1
+

∂2φ1

∂t0∂r
η1 +

1

2

[(
∂φ1

∂r

)2

+

(
∂φ1

∂z

)2
]

+
∂φ1

∂r

(
∂η1

∂t0
− ∂φ1

∂r

)}]]

= −σ

{
∂2η2

∂z2
+

1

2R

(
∂η1

∂z

)2

+
η2

R2
− η2

1

R3

}
. (A.6)

Order O(ε3)

[[
ρ

{
∂φ3

∂r
+

∂2φ2

∂r2
η1 +

∂2φ1

∂r2
η2 +

1

2

∂3φ1

∂r3
η2

1 − ∂η3

∂t0
− ∂η2

∂t1
− ∂η1

∂t2

− ∂η1

∂z

(
∂φ2

∂z
+

∂2φ1

∂z∂r
η1

)
− ∂η2

∂z

∂φ1

∂z

}]]
= 0 (A.7)

ρ(1)

{
∂φ

(1)
3

∂r
+

∂2φ
(1)

2

∂r2
η1 +

∂2φ
(1)

1

∂r2
η2 +

1

2

∂3φ
(1)

1

∂r3
η2

1 − ∂η3

∂t0
− ∂η2

∂t1
− ∂η1

∂t2

− ∂η1

∂z

(
∂φ

(1)
2

∂z
+

∂2φ
(1)
1

∂z∂r
η1

)
− ∂η2

∂z

∂φ
(1)
1

∂z

}
= α

(
η3 + 2α2η1η2 + α3η

3
1

)
(A.8)

[[
ρ

{
∂φ3

∂t0
+

∂φ2

∂t1
+

∂φ1

∂t2
+

∂2φ1

∂t0∂r
η2 +

(
∂2φ1

∂t1∂r
+

∂2φ2

∂t0∂r

)
η1 +

1

2

∂3φ1

∂t0∂r2
η2

1

+
∂φ1

∂r

(
∂φ2

∂r
+

∂2φ1

∂r2
η1

)
+

∂φ1

∂z

(
∂φ2

∂z
+

∂2φ1

∂r∂z
η1

)
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−
(

∂φ1

∂r
− ∂η1

∂t0

) (
∂φ2

∂r
− ∂φ1

∂z

∂η1

∂z

)
+

∂φ1

∂r

(
∂η2

∂t0
+

∂η1

∂t1
− ∂φ2

∂r
+

∂φ1

∂z

∂η1

∂z

)

+ η1
∂2φ1

∂r2

(
∂η1

∂t0
− 2

∂φ1

∂r

)}]]
= −σ

{
∂2η3

∂z2
− 3

2

∂2η1

∂z2

(
∂η1

∂z

)2

− 1

2

η1

R2

(
∂η1

∂z

)2

+
1

R

∂η1

∂z

∂η2

∂z
+

η3

R2
− 2η1η2

R3
+

η3
1

R4

}
. (A.9)
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